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Hydro

Why I believe that there’s hydro at RHIC (and why you should too):

1.X Ideal hydro works kind-of (not for today)

2. Viscous corrections systematically capture deviations of data from ideal hydro



Viscous Hydro – Dependence on System Size

Tµν = euµuν + pgµν︸ ︷︷ ︸
Ideal

− η 〈∇µuµ〉︸ ︷︷ ︸
Viscous∼ `mfp/L

+ . . .︸ ︷︷ ︸
2nd Order∼ (`mfp/L)2

• Totally integrated v2 versus systemsize (centrality) must come out right:

– Depends on almost nothing except Tµν (e.g. freezeout, δf , . . .)Extraction of (η/s)QGP from AuAu@RHIC
H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRL106 (2011) 192301
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1 < 4π(η/s)QGP < 2.5

• All shown theoretical curves correspond to parameter sets that correctly
describe centrality dependence of charged hadron production as well as
pT -spectra of charged hadrons, pions and protons at all centralities

• vch
2 /εx vs. (1/S)(dNch/dy) is “universal”, i.e. depends only on

η/s but (in good approximation) not on initial-state model (Glauber
vs. KLN, optical vs. MC, RP vs. PP average, etc.)

• dominant source of uncertainty: εGl
x vs. εKLN

x

• smaller effects: early flow → increases
v2
ε by ∼ few% → larger η/s

bulk viscosity → affects vch
2 (pT ), but ≈ not vch

2

e-by-e hydro → decreases
vch
2
ε by <∼ 5% → smaller η/s

Zhi Qiu, U, Heinz, arXiv:1104.0650
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Extraction of (η/s)QGP from AuAu@RHIC
H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRL106 (2011) 192301
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It works! (especially w. Hydro+cascade)



Basic O(`mfp/L) come out rightGlobal description of AuAu@RHIC spectra and v2

VISHNU (Song, Bass, Heinz, Hirano, Shen, PRC 83 (2011) 054910)

• (η/s)QGP = 0.08 for MC-Glauber and (η/s)QGP = 0.16 for MC-KLN work well for charged hadron, pion and proton
spectra and v2(pT ) at all collision centralities

• A purely hydrodynamic model (without UrQMD afterburner) with the same values of η/s does almost as well (except for
centrality dependence of proton v2(pT )) =⇒ Shen et al., arXiv:1105.3226

• Main difference: VISHNU develops more radial flow in the hadronic phase (larger shear viscosity), pure viscous hydro must
start earlier than VISHNU (τ0 = 0.6 instead of 1.05 fm/c), otherwise proton spectra are too steep

• These η/s values agree with Luzum & Romatschke, PRC78 (2008), even though they used EOS with incorrect hadronic
chemical composition =⇒ shows robustness of extracting η/s from total charged hadron v2

Ulrich Heinz 2nd JET Coll. Mtg., 17-19 June 2011 13(25)



Determining the Shear Viscosity of QGP with Correlations:
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1. Characterize energy density with ellipse

- Elliptic Shape gives elliptic flow

v2 = 〈cos 2φp〉

2. Around almond shape are fluctuations

- Triangular Shape gives v3 (Alver)

v3 = 〈cos 3(φp −Ψ3)〉

3. Hot-spots give correlated higher harmonics

- Systematized and simulated
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2. Around almond shape are fluctuations
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1. Characterize energy density with ellipse

- Elliptic Shape gives elliptic flow

v2 = 〈cos 2φp〉

2. Around almond shape are fluctuations

- Triangular Shape gives v3

v3 = 〈cos 3(φp −Ψ3)〉

3. Hot-spots give correlated higher harmonics

- Systematized and simulated



Determining the Shear Viscosity of QGP with Flow:
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1. Characterize energy density with ellipse

- Elliptic Shape gives elliptic flow

v2 = 〈cos 2φp〉

2. Around almond shape are fluctuations

- Triangular Shape gives v3

v3 = 〈cos 3(φp −Ψ3)〉

3. Hot-spots give correlated higher harmonics

- Systematized and simulated



Determining the Shear Viscosity of QGP with Correlations:
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1. Characterize energy density with ellipse

- Elliptic Shape gives elliptic flow

v2 = 〈cos 2φp〉

2. Around almond shape are fluctuations

- Triangular Shape gives v3 (Alver)

v3 = 〈cos 3(φp −Ψ3)〉

3. Hot-spots give correlated higher harmonics

- Systematized and simulated



Why is this useful?

1. Different harmonics are damped differently by viscosity

2. Depends on system size, momentum, . . .

Experiments vastly over constrain hydrodynamic predictions for QGP!



3+1 E by E viscous hydro simulations by Schenke et al
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

ψn =
1

n
arctan

〈pT sin(nφ)〉
〈pT cos(nφ)〉 , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = 〈cos(n(φ − ψn))〉 . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max−b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√
σNN/π, where σNN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT dφp
= gi

∫

Σ

f(uµpµ)pµd3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ

1

2(ε + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.

We include resonances up to the φ-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

ψn =
1

n
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〈pT sin(nφ)〉
〈pT cos(nφ)〉 , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = 〈cos(n(φ − ψn))〉 . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max−b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√
σNN/π, where σNN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.

We perform a Cooper-Frye freeze-out using
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where µi is the chemical potential for particle species
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viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ
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2(ε + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
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affected notably by the inclusion of resonance decays, im-
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

ψn =
1

n
arctan

〈pT sin(nφ)〉
〈pT cos(nφ)〉 , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = 〈cos(n(φ − ψn))〉 . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max−b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√
σNN/π, where σNN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT dφp
= gi

∫

Σ

f(uµpµ)pµd3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ

1

2(ε + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.

We include resonances up to the φ-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.

Initial Final Ideal Final Visc.

Higher harmonics are damped most by viscosity
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Viscous corrections grow with pT and “n”

• δf related to energy loss at modest momenta

f(p)
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phase space dist

= e−Ep/T

︸ ︷︷ ︸
Ideal (maxwell) distribution

+
pipj

2T 〈dp/dt〉p
〈∂iuj〉

︸ ︷︷ ︸
∼(`mfp/L)pT /T
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Phenix v3 data 5

ments were estimated by detailed comparisons of the
results obtained with the RXN, BBC, and MPC event
plane detectors and subevent selections. They are ∼ 3%,
∼ 8% and ∼ 20% for v2{Ψ2}, v3{Ψ3}, and v4{Ψ4}, re-
spectively, for midcentral collisions and increase by a
few percent for more central and peripheral collisions.
Through further comparison of the results obtained with
the RXN, BBC, and MPC event plane detectors, pseudo-
rapidity dependent nonflow contributions that may influ-
ence the magnitude of vn{Ψn}, such as jet correlations,
were shown [19] to be much less than all other uncertain-
ties for v2{Ψ2} and v4{Ψ2}.

The vn{Ψn} values shown in Fig. 2 increase with pT for
most of the measured range, and decrease for more cen-
tral collisions. v2{Ψ2} and v4{Ψ4} increase as expected
from central to semi-peripheral collisions, which reflects
the increase of εn in peripheral collisions. v3{Ψ3} ap-
pears to be much less centrality dependent, with values
comparable to v2{Ψ2} in the most central events. This
behavior is consistent with Glauber calculations of the
average fluctuations of the generalized “triangular” ec-
centricity ε3 [24, 25]. The Fig. 2 panels (c), (d), (g), and
(h) show comparisons of v2{Ψ2} and v3{Ψ3} to results
from hydrodynamic calculations. The pT and centrality
trends for both v2{Ψ2} and v3{Ψ3} are in good agree-
ment with the hydrodynamic models shown, especially
at pT below ≈ 1 GeV/c.

Figure 3 compares the centrality dependence of v2{Ψ2}
and v3{Ψ3} with several additional calculations, demon-
strating both the new constraints the data provide and
also the robustness of hydrodynamics to the details of dif-
ferent model assumptions for medium evolution. Alver
et al. [16] use relativistic viscous hydrodynamics in 2+1
dimensions. Fluctuations are introduced for two differ-
ent initial conditions. For Glauber initial conditions, the
energy density distribution in the transverse plane is pro-
portional to a superposition of struck nucleon and bi-
nary collision densities; in MC-KLN initial conditions
the energy density profile is further controlled by the
dependence of the gluon saturation momentum on the
transverse position [12, 13]. These two models of the ini-
tial state are paired with two different values of 4π η

s =
1 and 2, respectively. Both values reproduce the mea-
sured v2{Ψ2} equally well and the viscosity differences
reflect the different initial ε2. The two models have sim-
ilar ε3, and thus the larger viscosity needed in the MC-
KLN model corresponds to lower v3 than for Glauber.
Consequently, our measurement of v3{Ψ3} helps to dis-
entangle viscosity and initial conditions. The efficacy
of these 2+1 hydrodynamic results for Glauber initial
conditions are confirmed further calculations with dif-
ferent model assumptions. Petersen et al. [26] deter-
mine a Glauber initial state event-by-event, translat-
ing through pre-equilibrium with the UrQMD transport
model [27, 28], then evolving the medium with ideal
QGP hydrodynamics (η/s = 0), and finally switching to
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FIG. 2: (color online) vn{Ψn} vs. pT measured via the reac-
tion plane method. The curves are predictions from two hy-
drodynamic models: Alver et al. [16] and Schenke et al. [17].

a hadronic cascade (which has an effective viscosity) as
regions become dilute. B. Schenke et al. [17] use event-
by-event Glauber initial conditions, evolved with ideal
3+1 dimensional hydrodynamics, which includes the ef-
fects of viscosity in the plasma phase.

All of these models are compared with v2{Ψ2}, and
v3{Ψ3} data as a function of Npart in two pT bins. All
calculations describe v2{Ψ2} well at pT = 0.75 GeV/c.
Deviations from hydrodynamics should be expected in
peripheral collisions, where nonequilibrium effects may
be large. At higher pT , differences between the calcula-
tions become more apparent. All models still agree with
v2{Ψ2}, including MC-KLN initial conditions. How-
ever, the lower panels of Fig. 3 show the constraining
power of v3{Ψ3} and that the calculated results from
viscous hydrodynamics, with MC-KLN initial conditions
and 4π η

s = 2, lie significantly below the data. This is
more apparent in the higher pT bin, even in the most cen-
tral collisions. Therefore, our comparisons suggest that
the combination of MC-KLN initial conditions in concert
with 4π η

s = 2 is disfavored by our new v3{Ψ3} measure-
ments. By contrast, the results from the hydrodynamical

Hydro Works: (schenke, luzum)

1. Centrality dependence of v2 and v3

∼ (`mfp/L)

2. Relative strength of v2 and v3

3. pT dependence of viscous corrections

∼ (`mfp/L)
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ments were estimated by detailed comparisons of the
results obtained with the RXN, BBC, and MPC event
plane detectors and subevent selections. They are ∼ 3%,
∼ 8% and ∼ 20% for v2{Ψ2}, v3{Ψ3}, and v4{Ψ4}, re-
spectively, for midcentral collisions and increase by a
few percent for more central and peripheral collisions.
Through further comparison of the results obtained with
the RXN, BBC, and MPC event plane detectors, pseudo-
rapidity dependent nonflow contributions that may influ-
ence the magnitude of vn{Ψn}, such as jet correlations,
were shown [19] to be much less than all other uncertain-
ties for v2{Ψ2} and v4{Ψ2}.

The vn{Ψn} values shown in Fig. 2 increase with pT for
most of the measured range, and decrease for more cen-
tral collisions. v2{Ψ2} and v4{Ψ4} increase as expected
from central to semi-peripheral collisions, which reflects
the increase of εn in peripheral collisions. v3{Ψ3} ap-
pears to be much less centrality dependent, with values
comparable to v2{Ψ2} in the most central events. This
behavior is consistent with Glauber calculations of the
average fluctuations of the generalized “triangular” ec-
centricity ε3 [24, 25]. The Fig. 2 panels (c), (d), (g), and
(h) show comparisons of v2{Ψ2} and v3{Ψ3} to results
from hydrodynamic calculations. The pT and centrality
trends for both v2{Ψ2} and v3{Ψ3} are in good agree-
ment with the hydrodynamic models shown, especially
at pT below ≈ 1 GeV/c.

Figure 3 compares the centrality dependence of v2{Ψ2}
and v3{Ψ3} with several additional calculations, demon-
strating both the new constraints the data provide and
also the robustness of hydrodynamics to the details of dif-
ferent model assumptions for medium evolution. Alver
et al. [16] use relativistic viscous hydrodynamics in 2+1
dimensions. Fluctuations are introduced for two differ-
ent initial conditions. For Glauber initial conditions, the
energy density distribution in the transverse plane is pro-
portional to a superposition of struck nucleon and bi-
nary collision densities; in MC-KLN initial conditions
the energy density profile is further controlled by the
dependence of the gluon saturation momentum on the
transverse position [12, 13]. These two models of the ini-
tial state are paired with two different values of 4π η

s =
1 and 2, respectively. Both values reproduce the mea-
sured v2{Ψ2} equally well and the viscosity differences
reflect the different initial ε2. The two models have sim-
ilar ε3, and thus the larger viscosity needed in the MC-
KLN model corresponds to lower v3 than for Glauber.
Consequently, our measurement of v3{Ψ3} helps to dis-
entangle viscosity and initial conditions. The efficacy
of these 2+1 hydrodynamic results for Glauber initial
conditions are confirmed further calculations with dif-
ferent model assumptions. Petersen et al. [26] deter-
mine a Glauber initial state event-by-event, translat-
ing through pre-equilibrium with the UrQMD transport
model [27, 28], then evolving the medium with ideal
QGP hydrodynamics (η/s = 0), and finally switching to
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FIG. 2: (color online) vn{Ψn} vs. pT measured via the reac-
tion plane method. The curves are predictions from two hy-
drodynamic models: Alver et al. [16] and Schenke et al. [17].

a hadronic cascade (which has an effective viscosity) as
regions become dilute. B. Schenke et al. [17] use event-
by-event Glauber initial conditions, evolved with ideal
3+1 dimensional hydrodynamics, which includes the ef-
fects of viscosity in the plasma phase.

All of these models are compared with v2{Ψ2}, and
v3{Ψ3} data as a function of Npart in two pT bins. All
calculations describe v2{Ψ2} well at pT = 0.75 GeV/c.
Deviations from hydrodynamics should be expected in
peripheral collisions, where nonequilibrium effects may
be large. At higher pT , differences between the calcula-
tions become more apparent. All models still agree with
v2{Ψ2}, including MC-KLN initial conditions. How-
ever, the lower panels of Fig. 3 show the constraining
power of v3{Ψ3} and that the calculated results from
viscous hydrodynamics, with MC-KLN initial conditions
and 4π η

s = 2, lie significantly below the data. This is
more apparent in the higher pT bin, even in the most cen-
tral collisions. Therefore, our comparisons suggest that
the combination of MC-KLN initial conditions in concert
with 4π η

s = 2 is disfavored by our new v3{Ψ3} measure-
ments. By contrast, the results from the hydrodynamical
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ments were estimated by detailed comparisons of the
results obtained with the RXN, BBC, and MPC event
plane detectors and subevent selections. They are ∼ 3%,
∼ 8% and ∼ 20% for v2{Ψ2}, v3{Ψ3}, and v4{Ψ4}, re-
spectively, for midcentral collisions and increase by a
few percent for more central and peripheral collisions.
Through further comparison of the results obtained with
the RXN, BBC, and MPC event plane detectors, pseudo-
rapidity dependent nonflow contributions that may influ-
ence the magnitude of vn{Ψn}, such as jet correlations,
were shown [19] to be much less than all other uncertain-
ties for v2{Ψ2} and v4{Ψ2}.

The vn{Ψn} values shown in Fig. 2 increase with pT for
most of the measured range, and decrease for more cen-
tral collisions. v2{Ψ2} and v4{Ψ4} increase as expected
from central to semi-peripheral collisions, which reflects
the increase of εn in peripheral collisions. v3{Ψ3} ap-
pears to be much less centrality dependent, with values
comparable to v2{Ψ2} in the most central events. This
behavior is consistent with Glauber calculations of the
average fluctuations of the generalized “triangular” ec-
centricity ε3 [24, 25]. The Fig. 2 panels (c), (d), (g), and
(h) show comparisons of v2{Ψ2} and v3{Ψ3} to results
from hydrodynamic calculations. The pT and centrality
trends for both v2{Ψ2} and v3{Ψ3} are in good agree-
ment with the hydrodynamic models shown, especially
at pT below ≈ 1 GeV/c.

Figure 3 compares the centrality dependence of v2{Ψ2}
and v3{Ψ3} with several additional calculations, demon-
strating both the new constraints the data provide and
also the robustness of hydrodynamics to the details of dif-
ferent model assumptions for medium evolution. Alver
et al. [16] use relativistic viscous hydrodynamics in 2+1
dimensions. Fluctuations are introduced for two differ-
ent initial conditions. For Glauber initial conditions, the
energy density distribution in the transverse plane is pro-
portional to a superposition of struck nucleon and bi-
nary collision densities; in MC-KLN initial conditions
the energy density profile is further controlled by the
dependence of the gluon saturation momentum on the
transverse position [12, 13]. These two models of the ini-
tial state are paired with two different values of 4π η

s =
1 and 2, respectively. Both values reproduce the mea-
sured v2{Ψ2} equally well and the viscosity differences
reflect the different initial ε2. The two models have sim-
ilar ε3, and thus the larger viscosity needed in the MC-
KLN model corresponds to lower v3 than for Glauber.
Consequently, our measurement of v3{Ψ3} helps to dis-
entangle viscosity and initial conditions. The efficacy
of these 2+1 hydrodynamic results for Glauber initial
conditions are confirmed further calculations with dif-
ferent model assumptions. Petersen et al. [26] deter-
mine a Glauber initial state event-by-event, translat-
ing through pre-equilibrium with the UrQMD transport
model [27, 28], then evolving the medium with ideal
QGP hydrodynamics (η/s = 0), and finally switching to
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tion plane method. The curves are predictions from two hy-
drodynamic models: Alver et al. [16] and Schenke et al. [17].

a hadronic cascade (which has an effective viscosity) as
regions become dilute. B. Schenke et al. [17] use event-
by-event Glauber initial conditions, evolved with ideal
3+1 dimensional hydrodynamics, which includes the ef-
fects of viscosity in the plasma phase.

All of these models are compared with v2{Ψ2}, and
v3{Ψ3} data as a function of Npart in two pT bins. All
calculations describe v2{Ψ2} well at pT = 0.75 GeV/c.
Deviations from hydrodynamics should be expected in
peripheral collisions, where nonequilibrium effects may
be large. At higher pT , differences between the calcula-
tions become more apparent. All models still agree with
v2{Ψ2}, including MC-KLN initial conditions. How-
ever, the lower panels of Fig. 3 show the constraining
power of v3{Ψ3} and that the calculated results from
viscous hydrodynamics, with MC-KLN initial conditions
and 4π η

s = 2, lie significantly below the data. This is
more apparent in the higher pT bin, even in the most cen-
tral collisions. Therefore, our comparisons suggest that
the combination of MC-KLN initial conditions in concert
with 4π η

s = 2 is disfavored by our new v3{Ψ3} measure-
ments. By contrast, the results from the hydrodynamical
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Hydro

Why I believe that there’s hydro at RHIC (and why you should too):

X Ideal hydro works kind-of (not for today)

X Viscous corrections systematically capture deviations of data from ideal hydro

Makes the bounds 1/4π < η/s < 3/4π kind of convincing



Energy Loss
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Dijet Asymmetries at the LHC

Jet Quenching

•Key question:

– How do parton 
showers in hot 
medium (quark 
gluon plasma) 
differ from those 
in vacuum?

• 1st ATLAS result:

– Insight on 
differential 
quenching

!Next: probe 
“inclusive” 
quenching 

AJ ≡
ET1 − ET2
ET1 + ET2



Theoretical Calculations seem to get the Dijet Asymmetry
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FIG. 3: (Color online) The differential yield dN/dAJ for lead-lead collisions at
√

s = 2.76 GeV.

The results are shown for both αs = 0.25, 0.27, and 0.3. From examining the results for

dN/dφ compared with ATLAS, it is clear that the martini model constrains tightly the

only parameter in the model, αs.

On the other hand, Fig. 2 shows no significant difference in the distribution of dijets

between proton-proton and lead-lead collisions. The experimental results show a significant

increase in the yield at small φ in lead-lead collisions over what was observed in proton-proton

collisions. This enhancement, while significant, affects a relatively small number of dijets in

ATLAS’ sample, and could be due to complications facing jet reconstruction in heavy-ion

collisions with fluctuating soft backgrounds. This possible explanation was demonstrated

recently by Cacciari, Salam, and Soyez, without any consideration of jet quenching [23]. We

are currently working on including the event-by event fluctuations of the initial conditions

to take this effect into account. However we should point out that these fluctuations affect

a relatively small number of jets and does not significantly affect our results besides the

differential yield at small angles (which is clear when plotted semi-logarithmically).

Finally, Figure 3 shows the differential yield in Aj determined by CMS’ dijet sample,

compared with martini’s results based on CMS’ kinematical cuts.
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FIG. 3: (Color online) Distribution of di-jet asymmetry factor
AJ for p + p and Pb+Pb collisions at

√
sNN = 2.76 TeV at

the LHC. Left panel: 0-10% centrality; right panel: 10-20%
centrality.

di-jet events from PYTHIA [20] and obtain the distribu-
tion for the di-jet asymmetry factor AJ in p + p events.
The modification of each di-jet event in Pb+Pb collisions
is obtained as follows. For each di-jet event, we sample
its production points according to the distribution of the
binary nucleon-nucleon collisions in collisions of two Pb
nuclei. For asymmetric di-jets (AJ > 0.1), the trigger
bias is taken into account by letting the higher energy jet
propagate along the shorter path (implying a smaller en-
ergy loss), and the other jet to propagate along the other
direction. For nearly symmetric jet pairs (AJ < 0.1),
such a trigger bias does not apply.

As expected, the number of strongly asymmetric di-
jets is significantly increased by the medium evolution

which tends to let one jet lose more energy than the
other due to the different path lengths of the two jets in
the medium. The asymmetry of di-jets is more promi-
nent in the most central Pb+Pb collisions (left panel
of Fig. 3) than in mid-central events (right). The de-
pletion of energy inside the jet cone is a combination
of collisional energy loss experienced by all shower par-
tons, radiation outside the jet cone, and the scatter-
ing of radiated gluons into angle outside the jet cone.
From our fit to the data we obtain the average path-
length weighted transport coefficient in central collisions
〈q̂〉 = 〈q̂L〉/〈L〉 = 0.85 GeV2/fm, where the average is
over different production points and propagation direc-
tions. This corresponds to a value of q̂ = 2.1 GeV2/fm at
the highest temperature 400 MeV in Au+Au collisions at
RHIC, consistent with the systematic analysis performed
in Ref. [25].

In summary, we have studied the evolution of a jet
shower propagating in a quark-gluon plasma and calcu-
lated the loss of energy contained in a given cone an-
gle. The medium modification of the shower spectrum
and shape is described by a differential equation that
incorporates both, collisional energy loss and transverse
momentum broadening. Our approach provides a good
description of the di-jet asymmetry observed by the AT-
LAS Collaboration in Pb+Pb collisions at the LHC. The
values of the parton transport coefficients are similar to
those describing jet quenching at RHIC, extrapolated to
the higher matter density at the LHC. This suggests that
the quark-gluon plasma created at the LHC has similar
properties as that studied by the RHIC experiments.

This work was supported in part by Grants No. DE-
FG02-05ER41367 and No. de-sc0005396 from the U.S.
Department of Energy.
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Prediction:

All calculations move soft remnants away from the jet with “soft” 1/pT transport mechanisms

(Are they consistent with measured jT and longitudinal momentum distributions though?)
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Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms

– See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism

∆Θ is Large



Radiative and Collisional Loss:

Collisional Energy Loss:
dpLO

coll

dt (µ)

µ

E E - bit

T

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in hard particle out

Radiative Loss: dprad

dt (µ)

∆θ

E

T µ

(1 − x)E

xE

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in, two hard part. out

- We require xE � µ

As the bremmed energy gets lower and lower, the angle ∆θ gets larger and larger



Radiative and Collisional Loss

µ

Soft Radiative Loss:
dpNLO

coll

dt (µ)

E

T µ

E - bit

Features:

1. Plasma is excited: T � µ � E

2. Hard particle in, one hard particle out

This is higher order correction to the collisional E-loss rate

Collisional Energy Loss:
dpLO

coll

dt (µ)

µ

E E - bit

T

Final result is independent of µ:
dpLOcoll
dt

+
dpNLOcoll

dt︸ ︷︷ ︸
Phenomenological Coll E-loss

+
dprad
dt︸ ︷︷ ︸

Radiative Loss



Summary
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Summary

1. Hydro works amazingly well

2. Energy loss is progressing

3. What got left out (maybe):

• Is a quasi particle picture valid? At what temperature ?

– See quark matter talks: Nan Su, Olaf Kaczmarek



Quasi Particles are not?



Nearly Perfect Fluidity 47

ω

1
s

ρxyxy(ω)
2ω

∼ 1/g4

∼ 1

∼ g2

∼ 1

∼ (ω/T )3
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

1
/s

 !
x
y
x
y
("

)/
2
"

"/2#T

$/s=1/4#

AdS/CFT

#("/2#T)
3

Figure 5. Spectral function ρxyxy(ω,k=0) associated with the correlation function of

the xy component of the energy momentum tensor. The spectral function is normalized

to entropy density s. Left panel (Fig. (a)): Schematic picture of the spectral density

in weak coupling QCD or SUSY Yang Mills theory [145, 146]. Right panel (Fig. (b)):

Spectral density in strong coupling SUSY Yang-Mills theory calculated using the

AdS/CFT correspondence, from [147].

determined numerically. For small ω however, a straightforward calculation shows that

to linear order in ω the solution which is infalling at the horizon is

hxy = ho
xy(ω) (1 − u)−iω/4πT

[
1 − iω

4πT
log(1 + u) + O(ω2)

]
. (165)

Expanding this functional form near the boundary we find B(ω) = −iω/(4πT ). Then

using ε + p = sT and comparing the functional forms in equ. (160) and equ. (164) we

conclude that 〈Txy(ω)〉 = pho
xy − iωηho

xy with

η

s
=

1

4π
. (166)

Remarkably, the strong coupling limit of the shear viscosity is small and independent

of the coupling. The difference as compared to the weak coupling result becomes even

clearer if one considers the spectral function. As described in Sect. 3.4 the Kubo formula

relates the shear viscosity to the zero energy limit of the stress-energy spectral function.

In weak coupling QCD the spectral function has a narrow peak near zero energy which

reflects the fact that momentum transport is due to quasi-particles that are almost on-

shell. The height of the transport peak is governed by the kinetic theory result for the

shear viscosity. Kubo’s formula implies that ρ(ω)/ω ∼ T 3/g4 as ω → 0. The width can

be reconstructed from the f -sum rule

T
∫ Λ

0

dω

ω
ρxyxy(ω) =

T (ε + P )

5
, (167)

where g4T & Λ & g2T . Since the height of the transport peak is T 3/g4, the width

must be g4T . The high energy part of the spectral density can be computed from the

Quasi particle pciture: Independent scatterings No quasi−particles

Makes Predictions for spectral densities:



Quasi particle picture from Lattice spectral Densities (Olaf Kaczmarek, Quark Matter)

• Fits to Lattice Euclidean Data

Best Fit
18
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FIG. 7. Data for the continuum extrapolation of T 2GV (τT )/(χqG
free
V (τT )) and the fit result for fixed

cBW /Γ̃ and k(T ) (left). The three curves show the result from a fit in the interval τT ∈ [0.2 : 0.5] (central)

and results obtained by varying Γ̃ within its error band. In the right hand figure we show the spectral
function obtained from the fit and compare with the free spectral function.

correlated. Nonetheless, the fit provides an excellent description of the data. To illustrate the

sensitivity of our fit to the low energy Breit-Wigner contribution and its dependence on Euclidean

time, we show the fit to the data for GV (τT ) normalized to the free vector correlation function

and the quark number susceptibility in Fig. 7. The error band shown in this figure corresponds to

the width of the Breit-Wigner peak. The spectral function obtained from this fit is shown in the

right hand part of the figure. Here also the error band arising from a variation of the width Γ is

shown.

It is clear from Fig. 7, that the vector correlation function is sensitive to the low energy, Breit-

Wigner contribution only for distances τT>∼0.25. Taking into account also the value of the second

thermal moment, the fits to the large distance regime return fit parameters which are well con-

strained. As a consequence we obtain a significant result for the electrical conductivity, which is

directly proportional to the fit parameter cBW /Γ̃,

σ

T
=

Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW χ̃q

Γ̃
= (0.37 ± 0.01)Cem , (V.9)

which (accidentally) is close to the result found in [20] using staggered fermions with unrenormal-

ized currents. It is more than an order of magnitude larger than the electrical conductivity in a

pion gas [40].

It should be obvious that this determination of the electrical conductivity is sensitive to the

ansatz made for the spectral function in our analysis of the correlation functions. With this simple

ansatz we obtain good fits of the vector correlation function with a very small chi-square per degree

of freedom. However other ansätze may provide an equally good description of the current set of

data. We will explore this in the next subsection by generalizing the current ansatz.

We also note that the value determined for the correction to the free field behavior at large

energies k " 0.05 at T " 1.45Tc is quite reasonable. Using the relation to the perturbative result,

k = αs/π yields for the temperature dependent running coupling g2(T ) = 4παs " 2 which is in

good agreement with other determinations of temperature dependent running couplings at high

Range of fits
20

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

!
ii
(")/"T

"/T

#"/T=0.5

"
0
/T=0

0.5

1.0

1.5

1.75

cont

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

!
ii
(")/"T

"/T

"
0
/T=1.5

#"/T=0

0.1

0.25

0.5

cont

FIG. 8. Spectral functions obtained from fits to the vector correlation function using the ansatz given in
Eq. V.10. For comparison we also show only the continuum part of the spectral function. The left hand
figure shows results for different values of the cut-off (ω0) and fixed width (∆ω). The right hand figure
shows results for fixed ω0/T = 1.5 and several values of ∆ω. The curve labeled ’cont’ is the continuum
contribution to the fit described in Eq. V.3.

ω0/T ∆ω/T 2cBW χ̃q/Γ̃ Γ̃ k χ2/dof

0.0 0.5 1.290(46) 2.091(112) 0.1677(42) 0.08

0.5 0.5 1.315(43) 2.038(114) 0.1683(41) 0.11

1.0 0.5 2.039(22) 1.198(25) 0.1739(4) 0.19

1.5 0.5 2.694(19) 0.866(15) 0.1760(4) 0.56

1.75 0.5 3.338(18) 0.679(15) 0.1774(4) 1.00

1.5 0.0 2.471(20) 0.947(17) 0.1778(4) 0.32

1.5 0.1 1.976(23) 1.232(27) 0.1741(4) 0.36

1.5 0.25 2.873(19) 0.808(13) 0.1773(4) 0.39

1.5 0.5 2.694(19) 0.866(15) 0.1760(4) 0.56

TABLE V. Parameters for the fits shown in Fig. 8 left (upper part) and right (lower part). The last column
gives the χ2/dof of these fits.

C. Analysis of vector correlation functions using the Maximum Entropy Method

So far we did not make use of the Maximum Entropy Method that has been used in most other

lattice studies of the spectral function in the vector channel. Here we want to discuss to what

extent the analysis presented in the previous subsections can be reproduced in a MEM analysis,

or whether a MEM analysis may improve over the result obtained with an ansatz for the spectral

function. We performed a MEM analysis of the renormalized vector correlation function on our

finest lattice using the modified kernel which has been introduced in [20] and further refined in

[41].

To start the MEM analysis of a given meson correlation function we need to specify a default

model that incorporates all prior knowledge about the spectral function we want to determine.

Before presenting the analysis based on default models related to the fits discussed in the previous

subsections we performed a MEM analysis in analogy to what we had done earlier [18]. We used as


